
Divergence bounds for
random fixed-weight vectors

obtained by sorting

Daniel J. Bernstein

Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. This note analyzes the distribution of fixed-weight vectors
obtained by the following procedure: generate a sequence of uniform
random integers with a moderate number of bits; force the bottom bits
of the sequence to be a standard fixed-weight vector; sort the sequence;
and extract the bottom bits. This note shows, for example, that this
procedure with 32-bit integers produces any particular weight-119 6960-
bit vector with probability <1.02/

(
6960
119

)
.

Keywords: McEliece, NTRU, sorting

1 Introduction

Given a large file of N words, how would you “shuffle” it into a
random rearrangement? . . . One way is to attach random distinct
key values, sort on these keys, then discard the keys.

—Knuth [5, Section 5, Exercise 11 and answer], 1973;
slightly rephrased: [6, Section 5, Exercise 13 and answer], 1998

One can generate a random n-bit vector of Hamming weight w, i.e., having
exactly w nonzero bits, by randomly rearranging the following standard weight-
w n-bit vector: (1, 1, . . . , 1, 0, 0, . . . , 0) with w copies of 1 and n − w copies of
0. One way to carry out this rearrangement is to generate a random sequence
(r1, r2, . . . , rw, rw+1, rw+2, . . . , rn) of b-bit integers; sort the sequence; and apply
a corresponding permutation to the standard vector (1, 1, . . . , 1, 0, 0, . . . , 0).

If the sequence is a uniform random sequence of n distinct b-bit integers—
assume that n ≤ 2b so such sequences exist—then the permutation is a uniform
random permutation, and the output is a uniform random weight-w n-bit vector.
One can produce such a sequence by rejection sampling: first generate a uniform

This work was supported by the European Commission under Contract ICT-645622
PQCRYPTO; by the Netherlands Organisation for Scientific Research (NWO) un-
der grant 639.073.005; and by the U.S. National Science Foundation under grant
1314919. “Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation” (or other funding agencies). Permanent ID of this
document: a04dbdd157ddfbd056db4672629d74d27dfbfacf. Date: 2017.12.12.

2 Daniel J. Bernstein

random sequence of b-bit integers, and reject—i.e., try again—if the integers
collide (which is easy to see after sorting). This is intolerably slow if b is not
much larger than lg n, but the rejection probability becomes tolerable as b grows
past 2 lg n, and becomes much smaller as b continues to grow.

A faster, easier-to-implement approach is to skip the rejection: to generate a
uniform random sequence (r1, . . . , rn) of b-bit integers without checking that the
integers are distinct. If b is large, say b = 256, then rejection is extremely unlikely
to be observed in the foreseeable future, so skipping it makes no difference in the
outputs. But what if b is smaller: fitting integers into 64-bit words, for example,
or 32-bit words? This is even faster, but now collisions have a noticeable chance
of occurring. What is the impact of allowing them rather than rejecting them?

For each weight-w n-bit vector s, write ps for the probability that this proce-
dure outputs s. Then ps is a multiple of 1/2bn: there are exactly 2bn sequences
(r1, . . . , rn), of which some number produce s. For comparison, if weight-w n-bit
vectors were generated uniformly at random then s would appear with proba-
bility qs = 1/

(
n
w

)
. If
(
n
w

)
does not divide 2bn then ps cannot match qs. Does this

non-uniformity create security problems?
Assume, for example, that the resulting weight-w vector s is kept secret, but

that F (s) is revealed for some public function F . Assume that the attacker
runs some randomized algorithm A to try to find s given F (s). Write αs for the
conditional probability that A outputs s, given that s is in fact the secret vector.
Assume that this attack fails against the uniform distribution: that

∑
s αsqs is

tiny. Could
∑
s αsps be much larger? In other words, could the attack succeed

against the p distribution?
One way to put a bound on

∑
s αsps, given a bound on

∑
s αsqs, is to show

that the “divergence” of the p distribution from the q distribution is, say, ≤2.
This means that ps ≤ 2qs for each s. This immediately implies that

∑
s αsps ≤

2
∑
s αsqs: i.e., switching from the q distribution to the p distribution gives the

attacker an extra factor ≤2 in success probability. For example, if
∑
s αsqs ≤

2−128, then
∑
s αsps ≤ 2−127.

The point of this note is an easy-to-compute, and fairly tight, upper bound
on the divergence of p from q. This upper bound shows, for example, that the
divergence is <1.02 when n = 6960, w = 119, and b = 31. The attacker thus
gains a factor <1.02 in success probability, compared to the uniform distribution;
and this distribution is easier to compute than the uniform distribution.

The results here are easy exercises, but it is important to write down the
details for verification. There is a long history of security problems lurking inside
allegedly easy exercises that turned out to be incorrect.

1.1. Divergence vs. distance. A different way to put a bound on
∑
s αsps,

given a bound on
∑
s αsqs, is to show that the “distance” of the p distribution

from the q distribution is, say, ≤2−128. This means that
∑
s |ps− qs|/2 ≤ 2−128;

equivalently, the sum of all positive ps − qs is ≤2−128. This immediately implies
that

∑
s αsps −

∑
s αsqs =

∑
s αs(ps − qs) ≤ 2−128, since each αs is between 0

and 1: i.e., switching from the q distribution to the p distribution adds ≤2−128

to the attacker’s success probability.

Divergence bounds for random fixed-weight vectors obtained by sorting 3

Like the divergence bound, this distance bound would show that if
∑
s αsqs ≤

2−128 then
∑
s αsps ≤ 2−127. Unlike the divergence bound, the distance bound

would show that if
∑
s αsqs ≤ 0.5 + 2−128 then

∑
s αsps ≤ 0.5 + 2−127. This

extra feature of the distance bound is useful for “indistinguishability” security
definitions that challenge the attacker to guess a secret bit, and that compare
the resulting success probability to 0.5.

On the other hand, this extra feature is not necessary in the context of “un-
findability” security definitions that challenge the attacker to guess much larger
secrets: for example, to

• forge an authenticator,
• forge a signature, or
• find a random plaintext given a public key and the corresponding ciphertext.

Furthermore, there are various ways to build systems believed to meet various
indistinguishability notions out of systems believed to meet various unfindability
notions. The big advantage of the divergence bound is that it applies to much
smaller values of b than the distance bound.

Distance statements appear frequently in the cryptographic literature, while
divergence statements are relatively rare. The facts that divergence bounds are

• adequate in the context of unfindability and
• often stronger than distance bounds

have appeared in some papers on lattice-based cryptography in the last few years
(see, e.g., [1]), but were already used elsewhere in cryptography at least a decade
earlier; consider, for example, the statement “Pr[A(p) = 1] ≤ δ Pr[A(f) = 1]” in
[2, Theorem 2.1].

1.2. Terminology. The word “distance” has many meanings. The object called
“distance” in this paper is often called the “statistical distance” (although this
phrase also has other meanings) or the “total variation distance”.

The word “divergence” also has many meanings. The natural logarithm of
the object called “divergence” in this paper, the maximum of ps/qs, is the same
as the “Rényi divergence of order ∞”, although it seems likely that this simple
concept predates Rényi. Some recent security bounds have used Rényi divergence
of other orders.

A “b-bit integer” in this paper means an element of
{

0, 1, . . . , 2b − 1
}

. There
is no requirement for the bth bit to be set. Negative integers are not included.

2 Warmup: non-uniform coefficients

This section gives a simple example of a divergence calculation. A uniform ran-
dom sequence of n b-bit integers is being used to produce a vector of n elements
of {0, 1, . . . , q − 1}; the question is how close the output vector is to uniform.

4 Daniel J. Bernstein

Theorem 2.1. Fix integers b ≥ 0, q ≥ 1, P ≥ 1, and n ≥ 0. Let (r1, . . . , rn)
be a uniform random element of

{
0, 1, . . . , 2b − 1

}n
. Let F be a function from{

0, 1, . . . , 2b − 1
}

to {0, 1, . . . , q − 1}. Assume that each j ∈ {0, 1, . . . , q − 1} has
≤P preimages under F . Let (s1, . . . , sn) be an element of {0, 1, . . . , q − 1}n. Then
Pr[(F (r1), . . . , F (rn)) = (s1, . . . , sn)] ≤ δ/qn where δ = (Pq/2b)n.

In other words, the divergence of (F (r1), . . . , F (rn)) from uniform is ≤δ. This
is most interesting when δ is not much larger than 1, i.e., when P is not much
larger than 2b/q. Note that P cannot be smaller than 2b/q. Theorems 2.2 and
2.3 give two examples of convenient functions F that work with P =

⌈
2b/q

⌉
.

Proof. The condition (F (r1), . . . , F (rn)) = (s1, . . . , sn) is satisfied by ≤P choices
of r1, ≤P choices of r2, and so on through ≤P choices of rn, for a total of ≤Pn
choices of the sequence (r1, r2, . . . , rn). These choices occur with probability
≤Pn/2bn = δ/qn. ut

Theorem 2.2. Fix integers b ≥ 0 and q ≥ 1. Define F :
{

0, 1, . . . , 2b − 1
}
→

{0, 1, . . . , q − 1} by F (r) = r mod q. Fix j ∈ {0, 1, . . . , q − 1}. Then j has ≤
⌈
2b/q

⌉
preimages under F .

Proof. If F (r) = j then r is in the set {j, j + q, j + 2q, . . . , j + (k − 1)q}, where
k is the smallest integer such that j + kq ≥ 2b. This is a set of size k =⌈
(2b − j)/q

⌉
≤
⌈
2b/q

⌉
. ut

Theorem 2.3. Fix integers b ≥ 0 and q ≥ 1. Define F :
{

0, 1, . . . , 2b − 1
}
→

{0, 1, . . . , q − 1} by F (r) =
⌊
qr/2b

⌋
. Fix j ∈ {0, 1, . . . , q − 1}. Then j has ≤

⌈
2b/q

⌉
preimages under F .

Proof. If F (r) = j then j ≤ qr/2b < j + 1 so 2bj/q ≤ r < 2b(j + 1)/q; i.e., r
is in the set

{⌈
2bj/q

⌉
, . . . ,

⌈
2b(j + 1)/q

⌉
− 1
}

. This set has size
⌈
2b(j + 1)/q

⌉
−⌈

2bj/q
⌉
≤
⌈
2b/q

⌉
. ut

2.4. Application to Streamlined NTRU Prime 4591761. The first step in
key generation for the Streamlined NTRU Prime cryptosystem is to generate a
uniform random n-coefficient vector with each coefficient in {−1, 0, 1}. Proposed
parameters take n = 761. The software actually generates each coefficient as
follows: generate a uniform random 30-bit integer, multiply by 3, divide by 230

(rounding down), and subtract 1.
Take b = 30 and q = 3. Define F as in Theorem 2.3; then each j ∈ {0, 1, 2}

has ≤P preimages under F where P =
⌈
2b/q

⌉
. The software starts with a uni-

form random element (r1, . . . , rn) of
{

0, 1, . . . , 2b − 1
}n

. By Theorem 2.1, the
divergence of (F (r1), . . . , F (rn)) from a uniform random element of {0, 1, 2}n is
≤δ where δ = (Pq/2b)n = (

⌈
230/3

⌉
3/230)761 = (1 + 1/229)761 ≈ 1.000001417.

Finally, the software outputs (F (r1) − 1, . . . , F (rn) − 1), which has the same
divergence from a uniform random element of {−1, 0, 1}n.

To summarize, the non-uniformity of the output vector increases findability
by a factor <1.000002.

Divergence bounds for random fixed-weight vectors obtained by sorting 5

Streamlined NTRU Prime puts an extra requirement on these vectors: key
generation starts over if the vector does not satisfy an algebraic invertibility
condition. This restriction cannot increase the divergence: the maximum ps/qs
within a limited set of s is bounded by the maximum ps/qs on the full set.

2.5. Application to NTRU LPRime 4591761. Let (r1, . . . , rn) be a uniform
random sequence of n b-bit integers, where again n = 761 but now b = 32. Define
F as in Theorem 2.2, with q = 4591. Then each j ∈ {0, 1, . . . , q − 1} has ≤

⌈
2b/q

⌉
preimages under F . By Theorem 2.1, the divergence of (F (r1), . . . , F (rn)) from
a uniform random element of {0, 1, . . . , q − 1}n is ≤δ where δ = (Pq/2b)n =
(
⌈
232/4591

⌉
4591/232)761 ≈ 1.00007672.

In the NTRU LPRime 4591761 cryptosystem, a public 32-byte seed is mapped
to an element of {0, 1, . . . , q − 1}n as follows: the seed is used as an AES-256-CTR
key to produce n 32-bit integers (r1, . . . , rn), which are then reduced modulo
q. The non-uniformity of reduction modulo q increases findability by a factor
<1.000077. Of course, AES-256-CTR output is not uniform random, and it is
possible that this AES-256-CTR structure allows attacks, but this structure is
outside the scope of this note.

3 Random fixed-weight binary vectors

This section returns to the sorting procedure stated in Section 1. A uniform
random sequence (r1, r2, . . . , rn) of n b-bit integers is sorted, and a standard
weight-w n-bit vector (1, . . . , 1, 0, . . . , 0) is permuted accordingly, producing a
random weight-w n-bit vector.

To clearly define the output distribution, one must pinpoint exactly which per-
mutation is being applied to the standard vector, or at least pinpoint the result
of applying this permutation to the standard weight-w vector. If r1, r2, . . . , rn
are distinct then there is no ambiguity: there is exactly one permutation that
puts them into order. However, if there are collisions then the permutation is
not uniquely defined, and if there are collisions of the form ri = rj where i ≤ w
and j > w then the output is not uniquely defined.

An easy-to-implement definition of a specific output is as follows: sort the
(b+ 1)-bit integers 2r1 + 1, 2r2 + 1, . . . , 2rw + 1, 2rw+1, 2rw+2, . . . , 2rn, and then
reduce modulo 2. This is equivalent to lexicographically sorting the pairs

(r1, 1), (r2, 1), . . . , (rw, 1), (rw+1, 0), (rw+2, 0), . . . , (rn, 0),

and then extracting the second component of each pair. This is also equivalent
to applying the unique permutation defined by “anti-stable” sorting, since the
standard string (1, 1, . . . , 1, 0, 0, . . . , 0) is in anti-sorted order.

This definition has a slight preference for putting 0 before 1: for example, if
rw = rw+1 then 2rw + 1 will be sorted after 2rw+1. Theorem 3.1 quantifies the
overall non-uniformity of the output distribution.

6 Daniel J. Bernstein

Theorem 3.1. Fix integers b ≥ 0, w ≥ 0, and n ≥ w. Let (r1, . . . , rn) be a
uniform random element of

{
0, 1, . . . , 2b − 1

}n
. Define

(t1, . . . , tn) = sort(2r1 + 1, . . . , 2rw + 1, 2rw+1, . . . , 2rn).

Fix a weight-w element (s1, . . . , sn) ∈ {0, 1}n. Then (t1 mod 2, . . . , tn mod 2) =
(s1, . . . , sn) with probability ≤δ/

(
n
w

)
, where

δ =

(
1 +

1

2b

)(
1 +

2

2b

)(
1 +

3

2b

)
· · ·
(

1 +
n− 1

2b

)
.

Proof. There is a permutation π of {1, . . . , n} (not necessarily unique) such that
(tπ(1), . . . , tπ(n)) = (2r1 +1, . . . , 2rw+1, 2rw+1, . . . , 2rn). Write ui = bti/2c; then
(uπ(1), . . . , uπ(n)) = (r1, . . . , rn). The number of possibilities for (r1, . . . , rn) is at
most the product of the number of possibilities for (u1, . . . , un) and the number
of possibilities for π.

By hypothesis t1 ≤ · · · ≤ tn, so u1 ≤ · · · ≤ un. This limits (u1, . . . , un) to a set

of
(
2b−1+n

n

)
possibilities, namely the set of sorted sequences of n b-bit integers.

Notice that if (t1 mod 2, . . . , tn mod 2) = (s1, . . . , sn) then (sπ(1), . . . , sπ(n)) =
(1, . . . , 1, 0, . . . , 0). This limits π to a set of w!(n−w)! permutations, namely those
that take the w nonzero positions in s to positions 1, . . . , w in some order.

The probability that (t1 mod 2, . . . , tn mod 2) = (s1, . . . , sn) is therefore at

most w!(n− w)!
(
2b−1+n

n

)
/2bn = (2b + n− 1) · · · (2b + 1)2b/2bn

(
n
w

)
= δ/

(
n
w

)
. ut

If (s1, . . . , sn) is not sorted then there are actually fewer possibilities for
(u1, . . . , un) in the proof: for example, if s1 > s2 then u1 < u2. Even if (s1, . . . , sn)
is sorted, the δ bound is not tight in general: collisions sometimes mean that
many choices of π are consistent with the same (r1, . . . , rn).

3.2. Application to McEliece. The original McEliece code-based cryptosys-
tem [7] asks for a uniform random weight-w n-bit vector. The same is true for
the Niederreiter “dual” code-based cryptosystem [8] and many newer code-based
cryptosystems.

The case (n,w) = (6960, 119) mentioned in Section 1 is a typical example
aiming for a high security level. Theorem 3.1 says that the divergence is bounded
by δ = (1 + 1/2b) · · · (1 + 6959/2b). For example, δ ≈ 1.011341 for b = 31; this
choice of b means sorting 6960 32-bit integers. As a larger example, increasing n
from 6960 to 8192, again with b = 31, increases δ to approximately 1.015746.

4 Random fixed-weight ternary vectors

This section switches from weight-w elements of {0, 1}n to weight-w elements of
{−1, 0, 1}n. This expands the number of possible outputs from

(
n
w

)
to 2w

(
n
w

)
.

One can generate a weight-w element of {−1, 0, 1}n by first generating a
weight-w element of {0, 1}n and then multiplying each entry by ±1. However, it
is more efficient to apply the ±1 to the standard weight-w vector before sorting:

Divergence bounds for random fixed-weight vectors obtained by sorting 7

i.e., to randomly rearrange the vector (−1 + 2c1, . . . ,−1 + 2cw, 0, . . . , 0) where
(c1, . . . , cw) ∈ {0, 1}w. This in turn requires multiplying each ri by something
larger than 2; multiplying by 4 is the obvious choice.

Theorem 4.1 quantifies the non-uniformity of the output distribution. The
divergence bound δ is the same as in Theorem 3.1, and the proof proceeds along
the same lines. The detailed are spelled out here for verification.

Theorem 4.1. Fix integers b ≥ 0, w ≥ 0, and n ≥ w. Let (r1, . . . , rn) be a
uniform random element of

{
0, 1, . . . , 2b − 1

}n
. Let (c1, . . . , cw) be a uniform

random element of {0, 1}w. Define

(t1, . . . , tn) = sort(4r1 + 2c1, . . . , 4rw + 2cw, 4rw+1 + 1, . . . , 4rn + 1).

Fix a weight-w element (s1, . . . , sn) ∈ {−1, 0, 1}n. Then

(t1 mod 4, . . . , tn mod 4) = (s1 + 1, . . . , sn + 1)

with probability ≤δ/2w
(
n
w

)
, where

δ =

(
1 +

1

2b

)(
1 +

2

2b

)(
1 +

3

2b

)
· · ·
(

1 +
n− 1

2b

)
.

Proof. There is a permutation π of {1, . . . , n} (not necessarily unique) such that
(tπ(1), . . . , tπ(n)) = (4r1 + 2c1, . . . , 4rw + 2cw, 4rw+1 + 1, . . . , 4rn + 1). Write ui =
bti/4c. Then (uπ(1), . . . , uπ(n)) = (r1, . . . , rn). Also, if (t1 mod 4, . . . , tn mod 4) =
(s1 + 1, . . . , sn + 1) then (2c1, . . . , 2cw) = (sπ(1) + 1, . . . , sπ(w) + 1).

Consequently (r1, . . . , rn, c1, . . . , cw) is determined by (u1, . . . , un) and π. The
number of possibilities for (r1, . . . , rn, c1, . . . , cw) is at most the product of the
number of possibilities for (u1, . . . , un) and the number of possibilities for π.

By hypothesis t1 ≤ · · · ≤ tn, so u1 ≤ · · · ≤ un. This limits (u1, . . . , un) to a set

of
(
2b−1+n

n

)
possibilities, namely the set of sorted sequences of n b-bit integers.

As for π: Notice that if (t1 mod 4, . . . , tn mod 4) = (s1 + 1, . . . , sn + 1) then
((sπ(1) +1) mod 2, . . . , (sπ(n) +1) mod 2) = (0, . . . , 0, 1, . . . , 1). This limits π to a
set of w!(n−w)! permutations, namely those that take the w nonzero positions
in s to positions 1, . . . , w in some order.

The probability that (t1 mod 4, . . . , tn mod 4) = (s1+1, . . . , sn+1) is at most

w!(n−w)!
(
2b−1+n

n

)
/2bn+w = (2b+n−1) · · · (2b+1)2b/2bn+w

(
n
w

)
= δ/2w

(
n
w

)
. ut

4.2. Application to Streamlined NTRU Prime 4591761. The Streamlined
NTRU Prime cryptosystem generates a uniform random weight-w element of
{−1, 0, 1}n during key generation, and another during encapsulation. Proposed
parameters take n = 761 and w = 286.

What the software actually does is sort n (b + 2)-bit integers as described
above, where b = 30. By Theorem 4.1, the divergence of the output from uniform
is ≤δ where δ = (1 + 1/230) · · · (1 + 760/230) ≈ 1.000269. This quantifies and
justifies the statement “the information leak is negligible” in [3, Appendix T].

8 Daniel J. Bernstein

The central “OW-CPA” security question is whether an attacker can find a
random plaintext, given a random public key and the corresponding ciphertext.
Overall this problem involves three independent random vectors in Streamlined
NTRU Prime 4591761:

• the plaintext has a random weight-w vector,
• the secret key has another random weight-w vector, and
• the secret key has another random vector generated as in Section 2.4.

These random vectors have divergence <1.00027, <1.00027, and <1.000002 from
uniform respectively, overall increasing the attacker’s OW-CPA success proba-
bility by a factor <1.001.

4.3. Application to NTRU LPRime 4591761. Similar comments apply to
the NTRU LPRime cryptosystem. The sorting procedure is built into the spec-
ification of NTRU LPRime 4591761, rather than merely being a choice made in
the software; the structure of NTRU LPRime requires the sender and receiver
to agree on the details of how weight-w vectors are generated. The choice of w
for NTRU LPRime 4591761 is different, w = 250, but this does not affect δ in
Theorem 4.1.

References

[1] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, Ron Steinfeld, Im-
proved security proofs in lattice-based cryptography: Using the Rényi divergence
rather than the statistical distance, in Asiacrypt 2015 [4] (2015), 3–24. URL:
https://eprint.iacr.org/2015/483. Citations in this document: §1.1.

[2] Daniel J. Bernstein, Stronger security bounds for permutations (2005). URL:
https://cr.yp.to/papers.html#permutations. Citations in this document:
§1.1.

[3] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Christine van
Vredendaal, NTRU Prime: reducing attack surface at low cost, SAC 2017, to
appear (2017). URL: https://ntruprime.cr.yp.to/papers.html. Citations in
this document: §4.2.

[4] Tetsu Iwata, Jung Hee Cheon (editors), Advances in cryptology—ASIACRYPT
2015—21st international conference on the theory and application of cryptology
and information security, Auckland, New Zealand, November 29–December 3,
2015, proceedings, part I, Lecture Notes in Computer Science, 9452, Springer,
2015. ISBN 978-3-662-48796-9. See [1].

[5] Donald E. Knuth, The art of computer programming, volume 3: sorting and
searching, 1st edition, Addison-Wesley, 1973; see also newer version [6]. ISBN
0-201-03803-X. MR 56:4281. Citations in this document: §1.

[6] Donald E. Knuth, The art of computer programming, volume 3: sorting and
searching, 2nd edition, Addison-Wesley, 1998; see also older version [5]. ISBN
0-201-89685-0. Citations in this document: §1.

[7] Robert J. McEliece, A public-key cryptosystem based on algebraic coding the-
ory, JPL DSN Progress Report (1978), 114–116. URL: https://ipnpr.jpl.nasa.
gov/progress_report2/42-44/44N.PDF. Citations in this document: §3.2.

https://eprint.iacr.org/2015/483
https://cr.yp.to/papers.html#permutations
https://ntruprime.cr.yp.to/papers.html
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

Divergence bounds for random fixed-weight vectors obtained by sorting 9

[8] Harald Niederreiter, Knapsack-type cryptosystems and algebraic coding theory,
Problems of Control and Information Theory 15 (1986), 159–166. Citations in
this document: §3.2.

